
C++ 11 and C++ 14

Kate Gregory

www.gregcons.com/kateblog

@gregcons

New Language And Library Features That

Will Make Your Code Better

C++ Standard
• For a long time, there was no standard at all

o Multiple compilers, mostly agreed with what Stroustrup wrote

• C++ 98
o Slightly tweaked in 2003

o Some people say C++ 98/03

• TR1 – technical report 1
o The parts of “C++ 0x” everyone could agree on

o Released in 2005

o Compilers started to implement parts they liked

• C++ 11
o What C++0x turned out to be

• C++ 14
o Settled Feb 15th 2014 at Issaquah meeting

o Completes C++ 11

• Language
o Keywords, punctuation, syntax, parsing

• Library
o std::

Visual C++
• Microsoft C++ 1 was Microsoft C 7.0, in 1992

o Over 20 years ago!

• VC1 was C++ 2

• … there was no VC3 (version # syncing) …

• VC9 was Visual C++ 2008, Visual Studio 2008
o VC9 SP1 implemented some TR1 features

• VC10 is Visual C++ 2010, Visual Studio 2010
o Lots of C++11 features are included

• VC11 is Visual C++ 11, Visual Studio 2012
o ALL library features

o Some/most language features

• VC12 is Visual C++ 12, Visual Studio 2013
o More language features (variadic templates!)

o Some C++ 14 features

The Big Deals
• auto

o Productivity, readability

o Maintenance

o Needed for lambdas

• Lambdas
o Make standard algorithms

usable

o Concurrency

o Functional style

• Range-based for

• Uniform Initialization
o {} everywhere

• shared_ptr,

unique_ptr
o Don’t delete stuff!

o Also, new stuff less

o Stack semantics (RAII) is your

friend

• Variadic templates

auto
• If you know C# var, you know auto

• Still strongly typed – just not by you

• 3 major strengths:
o Annoying iterator declarations

o Unspeakable types

o Dependent types (again, iterators) in volatile code

• Most of what you don’t like about standard

containers and standard algorithms goes away with

auto

Tiny Functions
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;

void print_square(int i)
{

cout << i*i << endl;
}

int main()
{

vector<int> v;
// vector gets filled
for_each(v.begin(), v.end(), print_square);

}

Why Does It Need a Name?
#include <vector>

#include <iostream>

#include <algorithm>

using namespace std;

int main() {

vector<int> v;

// vector gets filled

for_each(v.begin(), v.end(),

[](int i) { cout << i*i << endl; });

}

Lambdas
• Three parts

o [] – “Hi, I’m a lambda” aka capture clause

o () – parameters (imposed by the caller)

o {} – body

• Capture clause is non-optional but can be empty
o [x]

o [&x]

o [=]

o [&]

o Can also mix and match

• May need to specify return type
o [](int x) -> int {/* stuff */}

Lambdas and Concurrency
• Parallel Patterns Library (ppl.h)

o concurrency::parallel_for

o concurrency::parallel_for_each

• C++ AMP (amp.h)
o concurrency::parallel_for_each

• Both take a lambda as a parameter
o Represents the work being spread across cores

Range for
• Most of the for_each you write are for the

whole container
o begin(v), end(v)

o v.begin(),v.end()

• Neater:

for(int elem: v)

{/*loop body*/}

• Note:
o Language keyword, not library function in std::

o auto works here too – try const auto& to avoid copies

Initialization
• Many ways to initialize built in types like int

o int a = 2;

o int b(2);

• Initializing C-style arrays could be done with {}
o But who uses C-style arrays now?

• To initialize an object, use a constructor
o Foo f = 3;

o Employee newHire(John, today + 1, salary);

o Employee CEO();

o Employee someone;

• Lots of different ways means confusion
o Especially for newcomers to the language

Uniform initialization
• Braces are always ok

o int a{2};

o Employee CEO{};

o Employee newHire {John,today+1,salary};

o vector<int> v {1,2,3,4};

o vector<Employee> staff {CEO,newHire};

• Consistent and easy to remember

• Can nest
 vector<Employee> company { CEO,

newHire,
{Mary, today+1, salary}

};

shared_ptr and unique_ptr
• Stop managing memory yourself

o Member variables or local objects you’re just using for a calculation

o Raw pointers are the wrong choice if lifetime is to be managed

• Fine for observation/reaching eg parent->Invalidate();

• Best choice: solid objects, stack semantics
o Even when passing to / returning from functions

o RVO, move semantics

• Lowest overhead smart pointer: unique_ptr
o Noncopyable, but movable

o Plays well with collections (move it in, move it out)

• OK with ref counting overhead: shared_ptr
o make_shared lowers overhead somewhat

Variadic
• Taking an unspecified number and type of arguments

• Function
o printf

• Macro
o Logging

• Templates
o make_shared, make_unique

auto sp1 = make_shared<int>(2);

auto sp2 = make_shared<Employee>(John, today+1,

salary);

History
• Variadic templates are in C++ 11

o Needed for many valuable library features

o Including make_shared

• Parts of C++ 11 appeared in VS 2010
o And some parts slightly earlier in a feature pack for 2008

• Variadic templates were not actually implemented in
Visual Studio until Visual Studio 2013
o But features relying on them were implemented earlier

• Before that the library implementation faked them with
macros

• Infinity was actually 10
o And for performance reasons infinity was later lowered to 5

• Now that VC++ has variadic templates, your builds will
be faster

std::tuple
• Like a std::pair, but any number of elements

• Saves writing little class or struct just to hold a clump
of values

• Create with uniform initialization

std::tuple<int, std::string, double>
entry { 1, "Kate", 100.0 };

• Or use std::make_tuple
o Makes auto possible

• To access or set values, use
std::get<position>(tupleinstance)

• Has comparison operators etc already implemented

C++ Renaissance?
• Some of us never left

• Some great tech coming from Microsoft:
o Writing Windows 8 store apps in C++/CX

o Leveraging the GPU without learning another language using
C++ AMP

o More parity with managed languages

• Ask people what they don’t like about C++
o Almost every answer gets “that’s different w/ C++ 11”

o No denying there’s a lot of punctuation, though

• What should you do next?
o Get Visual Studio 2013

o Try some C++ 11 and 14 features

o Try writing a Windows Store app

o Try using C++ AMP

o www.gregcons.com/kateblog

