
C++ AMP:
Accelerated Massive Parallelism

in Visual C++
Kate Gregory

Gregory Consulting

www.gregcons.com/kateblog, @gregcons

C++ is the language for performance

• If you need speed at runtime, you use C++

• Frameworks and libraries can make your code faster

• Eg PPL: use all the CPU cores

• With little or no change to your logic and code

• Experienced C++ developers are productive in C++

• Don’t want to go back to C or C-like language

• Enjoy the tool support in Visual Studio

• Many C++ developers value portability

• Write standard C++, compile with anything

• Use portable libraries, run anywhere

• Even in all-Microsoft universe, simple deployment is important

Demo
Cartoonizer

What is C++ AMP?

•
•

•

•

•
•

•

•

•
•

•

Agenda

•Why? Hardware Review

•C++ AMP Fundamentals

•A Few Details

•Debugging and Visualizing

•Call to Action

Wait, Why?

• Until 2005 “Free Lunch”

• Clock speed increased every year

• Single threaded performance increased every year

• Apps got faster for free

• After 2005 “No More Free Lunch”

• Clock speeds are not increasing that fast anymore

• Instead, CPU’s get more powerful every year by adding more cores

• Single threaded performance is now increasing much slower If at all

• Want to get faster?

• Use more cores

CPUs vs GPUs today

CPU

• Low memory bandwidth

• Higher power consumption

• Medium level of parallelism

• Deep execution pipelines

• Random accesses

• Supports general code

• Mainstream programming

GPU

• High memory bandwidth

• Lower power consumption

• High level of parallelism

• Shallow execution pipelines

• Sequential accesses

• Supports data-parallel code

images source: AMD

• Niche programming• Mainstream programming with C++ AMP

CPU Parallelism

• Vectorization (SIMD, SSE, AVX, …)

• Visual Studio 2012 and 2013 can auto-vectorize and auto-parallelize your loops

• Multithreading:

• Microsoft PPL (Parallel Patterns Library)

• Intel TBB (Threading Building Blocks) (compatible interface with PPL)

.

GPU Parallelism

• CUDA: If you want to optimally use NVidia GPUs

• OpenCL : If you want to optimally use AMD GPUs

• DirectCompute: Uses HLSL, looks like C

• All are C-like, not truly C++

• no type safety, genericity, …

• only CUDA is becoming similar to C++

• Hard

• need to learn multiple technologies to optimally target multiple devices…

Speed Changes Everything

• 2-3x faster is “just faster”

• Do a little more, wait a little less

• Doesn’t change how users really work

• 5-10x faster is “significant”

• Worth upgrading

• Worth re-writing (parts of) your applications

• 100x+ faster is “fundamentally different”

• Worth considering a new platform

• Worth re-architecting your applications

• Makes completely new applications possible

C++ AMP

• Vendor independent (NVidia, AMD, …)

• Abstracts “accelerators” (GPU’s, APU’s, …)

• Only requirement: DirectX 11

• Fallback to WARP if no hardware GPU’s available

• Future support for other accelerators

• FPGA’s, off-site cloud computing…

• Support heterogeneous mix of accelerators!

• Example: both an NVidia andAMD GPU in your system splitting a
workload

C++ AMP is fundamentally a library

• Comes with Visual C++ 2012 and 2013

•
•
•

•

•

•

•
•

• Asks compiler to check your code is ok for GPU (DirectX)

Agenda

•Why? Hardware Review

•C++ AMP Fundamentals

•A Few Details

•Debugging and Visualizing

•Call to Action

parallel_for_each

•
•
•
•
• Lambda must capture everything by value, except
concurrency::array objects

•
•

•

void AddArrays(int n, int * pA, int * pB, int * pSum)
{

for (int i=0; i<n; i++)

{
pSum[i] = pA[i] + pB[i];

}

}

#include <amp.h>
using namespace concurrency;

void AddArrays(int n, int * pA, int * pB, int * pSum)
{

array_view<int,1> a(n, pA);
array_view<int,1> b(n, pB);
array_view<int,1> sum(n, pSum);

parallel_for_each(
sum.extent,
[=](index<1> i) restrict(amp)
{

sum[i] = a[i] + b[i];
}

);
}

Hello World: Array Addition

void AddArrays(int n, int * pA, int * pB,
int * pSum)
{

for (int i=0; i<n; i++)

{
pSum[i] = pA[i] + pB[i];

}

}

Basic Elements of C++ AMP coding

void AddArrays(int n, int * pA, int * pB, int * pSum)
{

array_view<int,1> a(n, pA);
array_view<int,1> b(n, pB);
array_view<int,1> sum(n, pSum);

parallel_for_each(
sum.extent,
[=](index<1> i) restrict(amp)
{

sum[i] = a[i] + b[i];
}

);
}

array_view variables captured and
associated data copied to
accelerator (on demand)

restrict(amp): tells the compiler to
check that this code conforms to C++
AMP language restrictions

parallel_for_each:
execute the lambda on
the accelerator once
per thread

extent: the number and
shape of threads to
execute the lambda

index: the thread ID that is running the
lambda, used to index into data

array_view: wraps the data to
operate on the accelerator

The lambda
• Executes on the accelerator in parallel with whatever CPU code

follows parallel_for_each() until a synchronization point is
reached

• Synchronization:

• Manually when calling array_view::synchronize()

• Good idea, because you can handle exceptions gracefully

• Automatically when CPU code uses structure wrapped by array_view

• Not recommended, because you might lose error information if
there is no try/catch block catching exceptions at that point

• Automatically when array_view goes out of scope

• Dangerous, errors will be ignored silently because destructors are
not allowed to throw exceptions

extent<N> - size of an N-dim space

index<N> - an N-dimensional point

array_view<T,N>

• View on existing data on the CPU or
GPU

• Dense in least significant dimension

• Of element T and rank N

• Requires extent

• Rectangular

• Access anywhere (implicit sync)

vector<int> v(10);

extent<2> e(2,5);
array_view<int,2> a(e, v);

//above two lines can also be written
//array_view<int,2> a(2,5,v);

index<2> i(1,3);

int o = a[i]; // or a[i] = 16;
//or int o = a(1, 3);

array_view

• Read-only buffer:

• array_view<const int, 2> av(…);

• Only copies data from the CPU to the accelerator at the start, not back to
the CPU at the end

• Write-only buffer:

• array_view<int, 2> av(…);

av.discard_data();

• Only copies data from the accelerator to the CPU at the end, not to the
accelerator at the start

Demo
Matrix Multiplication

Matrix Multiplication

C00 = A00 * B00 + A01 * B10

+ A02 * B20 + A03 * B30

Agenda

•Why? Hardware Review

•C++ AMP Fundamentals

•A Few Details

•Debugging and Visualizing

•Call to Action

restrict(amp) restrictions

• Can only call other restrict(amp) functions

• All functions must be inlinable

• Only amp-supported types

• int, unsigned int, float, double, bool

• structs & arrays of these types

• Pointers and References

• Lambdas cannot capture by reference, nor capture pointers

• References and single-indirection pointers supported only as local
variables and function arguments

restrict(amp) restrictions

• No

• recursion

• 'volatile'

• virtual functions

• pointers to functions

• pointers to member functions

• pointers in structs

• pointers to pointers

• bitfields

• No

• goto or labeled statements

• throw, try, catch

• globals or statics

• dynamic_cast or typeid

• asm declarations

• varargs

• unsupported types

• e.g. char, short, long double

restrict()

• restrict() is really part of the signature

• Can differentiate overloads

• Compare:

• float func1(float) restrict(cpu, amp);

• Can run on both CPU and C++ AMP accelerators

• float func2(float);

• General code – not ok to call from parallel_for_each

• float func2(float) restrict(amp);

• AMP-specific code –ok to call from parallel_for_each

vector<int> v(8 * 12);
extent<2> e(8,12);
accelerator acc = …
array<int,2> a(e,acc.default_view);
copy_async(v.begin(), v.end(), a);

array<T,N>

• Multi-dimensional array of rank N
with element T

• Container whose storage lives on a
specific accelerator

• Capture by reference [&] in the
lambda

• Explicit copy

• Nearly identical interface to
array_view<T,N>

parallel_for_each(e, [&](index<2> idx)
restrict(amp)

{
a[idx] += 1;

});
copy(a, v.begin());

Tiling

• Rearrange algorithm to do the calculation in tiles

• Each thread in a tile shares a programmable cache

• tile_static memory

• Access 100x as fast as global memory

• Excellent for algorithms that use each piece of information
again and again

•Overload of parallel_for_each that takes a tiled extent

Race Conditions in the Cache

• Because a tile of threads shares the programmable cache,
you must prevent race conditions

• Tile barrier can ensure a wait

• Typical pattern:

• Each thread does a share of the work to fill the cache

• Then waits until all threads have done that work

• Then uses the cache to calculate a share of the answer

Agenda

•Why? Hardware Review

•C++ AMP Fundamentals

•A Few Details

•Debugging and Visualizing

•Call to Action

Visual Studio 2013 AMP Support

•Debugging

• Everything you had before, plus:

• GPU Threads

• Parallel Stacks

• Parallel Watch

• Visualizing

Debugging

•GPU breakpoints are supported

•On Windows 8 and 7, no CPU/GPU simultaneous
debugging possible

•Choose the GPU Only debugging option

Debugging

• Windows 8.1 and VC++2013 support simultaneous CPU/GPU
debugging:

• Uses the WARP accelerator

Values, Call Stacks, etc

GPU Threads Window

• Shows progress
through the
calculation

Parallel Watch

• Shows values
across multiple
threads

And more!

• Race Condition Detection

• Parallel Stacks

• Flagging, Filtering, and Grouping

• Freezing and Thawing

• Run Tile to Cursor

Concurrency Visualizer

• Shows activity on CPU and GPU

• Can highlight relative times for specific parts of a calculation

• Or copy times to/from the accelerator

• Comes with Visual Studio 2012

• For Visual Studio 2013, shipped as a free extension

• Search www.visualstudiogallery.com or use Extension Manager inside
Visual Studio

http://www.visualstudiogallery.com/

Agenda

•Why? Hardware Review

•C++ AMP Fundamentals

•A Few Details

•Debugging and Visualizing

•Call to Action

C++ AMP is…
• C++

• The language you know

• Excellent productivity

• The language you choose when performance matters

• Implemented as (mostly) a library

• Variety of application types

• Well supported by Visual Studio

• Debugger

• Concurrency Visualizer

• Everything else you already use

• Can be supported by other compilers and platforms

• Open spec

Learn C++ AMP

• book http://www.gregcons.com/cppamp/

• training http://www.acceleware.com/cpp-amp-training

• videos http://channel9.msdn.com/Tags/c++-accelerated-massive-parallelism

• articles http://blogs.msdn.com/b/nativeconcurrency/archive/2012/04/05/c-amp-articles-in-msdn-magazine-april-issue.aspx

• samples http://blogs.msdn.com/b/nativeconcurrency/archive/2012/01/30/c-amp-sample-projects-for-download.aspx

• guides http://blogs.msdn.com/b/nativeconcurrency/archive/2012/04/11/c-amp-for-the-cuda-programmer.aspx

• spec http://blogs.msdn.com/b/nativeconcurrency/archive/2012/02/03/c-amp-open-spec-published.aspx

• forum http://social.msdn.microsoft.com/Forums/en/parallelcppnative/threads

http://blogs.msdn.com/nativeconcurrency/

http://www.gregcons.com/cppamp/
http://www.acceleware.com/cpp-amp-training
http://channel9.msdn.com/Tags/c++-accelerated-massive-parallelism
http://blogs.msdn.com/b/nativeconcurrency/archive/2012/04/05/c-amp-articles-in-msdn-magazine-april-issue.aspx
http://blogs.msdn.com/b/nativeconcurrency/archive/2012/01/30/c-amp-sample-projects-for-download.aspx
http://blogs.msdn.com/b/nativeconcurrency/archive/2012/04/11/c-amp-for-the-cuda-programmer.aspx
http://blogs.msdn.com/b/nativeconcurrency/archive/2012/02/03/c-amp-open-spec-published.aspx
http://social.msdn.microsoft.com/Forums/en/parallelcppnative/threads
http://blogs.msdn.com/nativeconcurrency/

Call to Action

•Get Visual Studio 2013

•Download some samples

• Play with debugger and other tools

• Try writing a C++ AMP application of your own

• Console (command prompt)

• Windows

• Metro style for Windows 8

•Measure your performance and see the difference

